kdv-2soliton-a.gif (32305 byte)

Physics and mathematics

of nonlinear processes and models

(University "La Sapienza" , Rome, Italy)

.

        Home

 

.

.

 

 

 

 

  
 

Matteo Sommacal

Published works:

[1] F. Calogero and M. Sommacal, Periodic solutions of a system of complex ODEs. II. Higher periods, J. Nonlinear Math. Phys. 9, 1-33 (2002).

[2] F. Calogero, J.-P. Franšoise and M. Sommacal, Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions, J. Nonlinear Math. Phys. 10, 157-214 (2003).

[3] D. Gomez-Ullate, A. N. W. Hone and M. Sommacal, New Many-Body Problems in the Plane with Periodic Solutions, New J. of Phys. 6, 24 (2004).

[4] D. Gomez-Ullate and M. Sommacal, Periods of the Goldfish Many-Body Problem, J. Nonlinear Math. Phys., Volume 12, Supplement 1, 351-362 (2005).

[5] F. Calogero, D. Gomez-Ullate, P. M. Santini and M. Sommacal, The Transition from Regular to Irregular Motions, Explained as Travel on Riemann Surfaces, J. Physics A38, 8873-8896 (2005).

[6] F. Calogero, M. Sommacal, Solvable nonlinear evolution PDEs in multidimensional space, SIGMA 2 (2006), 088, 17 pages; nlin.SI/0612019.

[7] S. De Lillo, G. Lupo and M. Sommacal, "Semiline solutions of a nonlinear heat conduction problem",
Proceedings of the Workshop "Nonlinear Physics. Theory and Experiment IV", Gallipoli (Lecce, Italy), 2006, Th. Math. Phys. 152(1), 926 (2007).

[8] F. Calogero, J.-P. Franšoise and M. Sommacal, Solvable nonlinear evolution PDEs in multidimensional space involving trigonometric functions, J. Phys. A40, F363-F368 (2007).

[9] F. Calogero, J.-P. Franšoise and M. Sommacal, Solvable nonlinear evolution PDEs in multidimensional space involving elliptic functions, J. Phys. A40, F705-F711 (2007).

[10] F. Calogero, D. Gomez-Ullate, P. M. Santini and M. Sommacal, Towards a Theory of Chaos Explained as Travel on Riemann Surfaces, J. Phys. A42, 015205 (2009).

[11] M. Argeri, V. Barone, S. De Lillo, G. Lupo and M. Sommacal, Elastic rods in life- and material-sciences. A general integrable model, Physica D238, 1031-1049 (2009).

[12] M. Argeri, V. Barone, S. De Lillo, G. Lupo and M. Sommacal, Existence of energy minimums for elastic thin rods in static helical configurations, Th. Math. Phys. 159(3), 698 (2009).

[13] S. De Lillo, G. Lupo and M. Sommacal, "Helical configurations of elastic rods in the presence of a long-range interaction potential", J. Phys. A 43, 085214 (2010).

Editorship
[1] D. Gomez-Ullate, S. Lombardo, M. Ma˝as, M. Mazzocco, F. Nijhoff and M. Sommacal, "Current trends in integrability and nonlinear phenomena", J. Physics A: Math. and Theor. (2010).